skip to main content


Search for: All records

Creators/Authors contains: "Robbins, Charles T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The diets of the eight species of ursids range from carnivory (e.g., polar bears,Ursus maritimus) to insectivory (e.g., sloth bears,Melursus ursinus), omnivory (e.g., brown bears,U. arctos), and herbivory (e.g., giant pandas,Ailuropoda melanoleuca). Dietary energy availability ranges from the high-fat, highly digestible, calorically dense diet of polar bears (~ 6.4 kcal digestible energy/g fresh weight) to the high-fiber, poorly digestible, calorically restricted diet (~ 0.7) of giant pandas. Thus, ursids provide the opportunity to examine the extent to which dietary energy drives evolution of energy metabolism in a closely related group of animals. We measured the daily energy expenditure (DEE) of captive brown bears in a relatively large, zoo-type enclosure and compared those values to previously published results on captive brown bears, captive and free-ranging polar bears, and captive and free-ranging giant pandas. We found that all three species have similar mass-specific DEE when travel distances and energy intake are normalized even though their diets differ dramatically and phylogenetic lineages are separated by millions of years. For giant pandas, the ability to engage in low-cost stationary foraging relative to more wide-ranging bears likely provided the necessary energy savings to become bamboo specialists without greatly altering their metabolic rate.

     
    more » « less
  2. Abstract

    Declining Arctic sea ice is increasing polar bear land use. Polar bears on land are thought to minimize activity to conserve energy. Here, we measure the daily energy expenditure (DEE), diet, behavior, movement, and body composition changes of 20 different polar bears on land over 19–23 days from August to September (2019–2022) in Manitoba, Canada. Polar bears on land exhibited a 5.2-fold range in DEE and 19-fold range in activity, from hibernation-like DEEs to levels approaching active bears on the sea ice, including three individuals that made energetically demanding swims totaling 54–175 km. Bears consumed berries, vegetation, birds, bones, antlers, seal, and beluga. Beyond compensating for elevated DEE, there was little benefit from terrestrial foraging toward prolonging the predicted time to starvation, as 19 of 20 bears lost mass (0.4–1.7 kg•day−1). Although polar bears on land exhibit remarkable behavioral plasticity, our findings reinforce the risk of starvation, particularly in subadults, with forecasted increases in the onshore period.

     
    more » « less
  3. Hibernation is a highly seasonal physiological adaptation that allows brown bears (Ursus arctos) to survive extended periods of low food availability. Similarly, daily or circadian rhythms conserve energy by coordinating body processes to optimally match the environmental light/dark cycle. Brown bears express circadian rhythms in vivo and their cells do invitro throughout the year, suggesting that these rhythms may play important roles during periods of negative energy balance. Here, we use time-series analysis of RNA sequencing data and timed measurements of ATP production in adipose-derived fibroblasts from active and hibernation seasons under two temperature conditions to confirm that rhythmicity was present. Culture temperature matching that of hibernation body temperature (34°C) resulted in a delay of daily peak ATP production in comparison with active season body temperatures (37°C). The timing of peaks of mitochondrial gene transcription was altered as were the amplitudes of transcripts coding for enzymes of the electron transport chain. Additionally, we observed changes in mean expression and timing of key metabolic genes such as SIRT1 and AMPK which are linked to the circadian system and energy balance. The amplitudes of several circadian gene transcripts were also reduced. These results reveal a link between energy conservation and a functioning circadian system in hibernation 
    more » « less
    Free, publicly-accessible full text available October 11, 2024
  4. Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024
  5. Objectives Complex physiological adaptations often involve the coordination of molecular responses across multiple tissues. Establishing transcriptomic resources for non-traditional model organisms with phenotypes of interest can provide a foundation for understanding the genomic basis of these phenotypes, and the degree to which these resemble, or contrast, those of traditional model organisms. Here, we present a one-of-a-kind gene expression dataset generated from multiple tissues of two hibernating brown bears (Ursus arctos). Data description This dataset is comprised of 26 samples collected from 13 tissues of two hibernating brown bears. These samples were collected opportunistically and are typically not possible to attain, resulting in a highly unique and valuable gene expression dataset. In combination with previously published datasets, this new transcriptomic resource will facilitate detailed investigation of hibernation physiology in bears, and the potential to translate aspects of this biology to treat human disease. 
    more » « less
    Free, publicly-accessible full text available June 8, 2024
  6. Abstract Objectives

    Complex physiological adaptations often involve the coordination of molecular responses across multiple tissues. Establishing transcriptomic resources for non-traditional model organisms with phenotypes of interest can provide a foundation for understanding the genomic basis of these phenotypes, and the degree to which these resemble, or contrast, those of traditional model organisms. Here, we present a one-of-a-kind gene expression dataset generated from multiple tissues of two hibernating brown bears (Ursus arctos).

    Data description

    This dataset is comprised of 26 samples collected from 13 tissues of two hibernating brown bears. These samples were collected opportunistically and are typically not possible to attain, resulting in a highly unique and valuable gene expression dataset. In combination with previously published datasets, this new transcriptomic resource will facilitate detailed investigation of hibernation physiology in bears, and the potential to translate aspects of this biology to treat human disease.

     
    more » « less
  7. Abstract

    Hibernation in brown bears is an annual process involving multiple physiologically distinct seasons—hibernation, active, and hyperphagia. While recent studies have characterized broad patterns of differential gene regulation and isoform usage between hibernation and active seasons, patterns of gene and isoform expression during hyperphagia remain relatively poorly understood. The hyperphagia stage occurs between active and hibernation seasons and involves the accumulation of large fat reserves in preparation for hibernation. Here, we use time-series analyses of gene expression and isoform usage to interrogate transcriptomic regulation associated with all three seasons. We identify a large number of genes with significant differential isoform usage (DIU) across seasons and show that these patterns of isoform usage are largely tissue-specific. We also show that DIU and differential gene-level expression responses are generally non-overlapping, with only a small subset of multi-isoform genes showing evidence of both gene-level expression changes and changes in isoform usage across seasons. Additionally, we investigate nuanced regulation of candidate genes involved in the insulin signaling pathway and find evidence of hyperphagia-specific gene expression and isoform regulation that may enhance fat accumulation during hyperphagia. Our findings highlight the value of using temporal analyses of both gene- and isoform-level gene expression when interrogating complex physiological phenotypes and provide new insight into the mechanisms underlying seasonal changes in bear physiology.

     
    more » « less
  8. Abstract

    The brown bear (Ursus arctos) is the second largest and most widespread extant terrestrial carnivore on Earth and has recently emerged as a medical model for human metabolic diseases. Here, we report a fully phased chromosome-level assembly of a male North American brown bear built by combining Pacific Biosciences (PacBio) HiFi data and publicly available Hi-C data. The final genome size is 2.47 Gigabases (Gb) with a scaffold and contig N50 length of 70.08 and 43.94 Megabases (Mb), respectively. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis revealed that 94.5% of single copy orthologs from Mammalia were present in the genome (the highest of any ursid genome to date). Repetitive elements accounted for 44.48% of the genome and a total of 20,480 protein coding genes were identified. Based on whole genome alignment to the polar bear, the brown bear is highly syntenic with the polar bear, and our phylogenetic analysis of 7,246 single-copy orthologs supports the currently proposed species tree for Ursidae. This highly contiguous genome assembly will support future research on both the evolutionary history of the bear family and the physiological mechanisms behind hibernation, the latter of which has broad medical implications.

     
    more » « less